Similarity-Based Alignment of Monolingual Corpora for Text Simplification Purposes

نویسندگان

  • Sarah Albertsson
  • Evelina Rennes
  • Arne Jönsson
چکیده

Comparable or parallel corpora are beneficial for many NLP tasks. The automatic collection of corpora enables large-scale resources, even for less-resourced languages, which in turn can be useful for deducing rules and patterns for text rewriting algorithms, a subtask of automatic text simplification. We present two methods for the alignment of Swedish easy-to-read text segments to text segments from a reference corpus. The first method (M1) was originally developed for the task of text reuse detection, measuring sentence similarity by a modified version of a TF-IDF vector space model. A second method (M2), also accounting for part-of-speech tags, was developed, and the methods were compared. For evaluation, a crowdsourcing platform was built for human judgement data collection, and preliminary results showed that cosine similarity relates better to human ranks than the Dice coefficient. We also saw a tendency that including syntactic context to the TF-IDF vector space model is beneficial for this kind of paraphrase alignment task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Building a Monolingual Parallel Corpus for Text Simplification Using Sentence Similarity Based on Alignment between Word Embeddings

Methods for text simplification using the framework of statistical machine translation have been extensively studied in recent years. However, building the monolingual parallel corpus necessary for training the model requires costly human annotation. Monolingual parallel corpora for text simplification have therefore been built only for a limited number of languages, such as English and Portugu...

متن کامل

DSim, a Danish Parallel Corpus for Text Simplification

We present DSim, a new sentence aligned Danish monolingual parallel corpus extracted from 3701 pairs of news telegrams and corresponding professionally simplified short news articles. The corpus is intended for building automatic text simplification for adult readers. We compare DSim to different examples of monolingual parallel corpora, and we argue that this corpus is a promising basis for fu...

متن کامل

Finding Synonyms Using Automatic Word Alignment and Measures of Distributional Similarity

There have been many proposals to extract semantically related words using measures of distributional similarity, but these typically are not able to distinguish between synonyms and other types of semantically related words such as antonyms, (co)hyponyms and hypernyms. We present a method based on automatic word alignment of parallel corpora consisting of documents translated into multiple lan...

متن کامل

Aligning Sentences from Standard Wikipedia to Simple Wikipedia

This work improves monolingual sentence alignment for text simplification, specifically for text in standard and simple Wikipedia. We introduce a method that improves over past efforts by using a greedy (vs. ordered) search over the document and a word-level semantic similarity score based on Wiktionary (vs. WordNet) that also accounts for structural similarity through syntactic dependencies. E...

متن کامل

A Keyword-based Monolingual Sentence Aligner in Text Simplification

We introduce a method for learning to align sentences in monolingual parallel articles for text simplification. In our approach, word keyness is integrated to prefer aligning essential words in sentences. The method involves estimating word keyness based on TF*IDF and semantic PageRank, and word nodes’ parts-of-speech and degrees of reference. At run-time, the keyword analyses are used as word ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016